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Problem Definition

• Test problem for methods for modeling epistemic
uncertainty

• Quantify uncertainty in a function when there is
imprecise information about input variables

• Function of variables Y=Y(A, B)
• Experts estimate intervals for A and B
• Variables A and B are independent -- our belief

about A does change if we learn something about
B

• What can we tell about Y?
• How good are the methods used?
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Outline

• Minimum-maximum probability method
• Bayesian method
• Experimental comparison
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Min-max Probability Method for Quantifying Uncertainty in a
Function

Marginal minimum and maximum probability density and
cumulative distributions of input variables consistent with

evidence

Min CDF

Max CDF

y

FY(y)

Joint minimum and maximum probability density and
cumulative distributions of input variables

Minimum and maximum cumulative 
distribution functions (CDF) of dependent variable
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Finding Maximum and Minimum
Probabilities

• Evidence from experts about independent variable A:

• Evidence: imprecise outcomes of experiment
• Randomness and imprecision

– Randomness: each expert gives a different answer about A -- we do
not know who is right

– Imprecision: experts provide intervals -- we do not know precise
value of A

A min,1

A min,2

A max,1

A max,2

A1

A2

A3A min,3 A max,3
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Finding Minimum and Maximum
Probabilities of Events

• Optimization problem formulation for
finding minimum  (maximum) probability
of an event, E

• Find a1,…an
• To minimize (maximize)

•  So that ai in [A min,i, A max,i]
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Modeling Uncertainty Using Minimum and Maximum
Cumulative Probability Distribution Functions (CDF)

Min CDF(a1 ) = Min P(A∈  ([-∞, a1 ]) = Belief([-∞, a1 ])
Max CDF(a1 ) = Max P(A∈  ([-∞, a1 ]) = Plausibility([-∞, a1 ])

Min CDF

Max CDF

a

High imprecision, 
low variability 

Min CDF

Max CDF

a

Low imprecision,
high variability

a1-∞
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Joint Minimum and Maximum Probabilities
of A and B
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Find Min CDF and Max CDF of Y

Min CDF

Max CDF

y

FY(y)
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• Discrete variable, A, evidence E

• Continuous variable, A, evidence E

Bayesian Method
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Bayesian Method
for Modeling Uncertainty in Variable A

Prior probability

density of A

Likelihood of obtaining evidence
of experts given true value of A

Bayes’ rule

Posterior probability density of A

Analyst’s
 judgment
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Assumptions for Modeling Uncertainty in
Independent Variables A and B

• Maximum entropy principle; uniform prior
• Evidence; a point estimate, ai, is assumed (e.g. Interval

midpoint)
• Point estimate of expert = true value + error:

Ai = a +ei

• Errors of experts, jointly normal random variables
• Mean values of errors, estimated based on judgment

– Unbiased expert, mean value of error = 0
• Standard deviation of error,σEi, estimated based on judgment.

Example, standard deviation=interval width/6)
• Correlation coefficients estimated based on judgment

experts correlated negatively0
experts correlated positively0

experts eduncorrelat0

<
>
=

ρ
ρ
ρ



13

Likelihood Function
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Evidence Assumptions Results 
 
A [0.2, 0.5] 
 
B  [0.3, 0.6] 

 
Unbiased experts 
error=interval 
width/6 
(Bayesian 
method) 

 
 
A  [0.1, 0.5],  
 
     [0.55, 0.95] 
 
B [0, 0.5],  
 
    [0.52, 1] 
 

 
Independent 
unbiased  
experts  
error=interval 
with/6 
 (Bayesian 
method) 

 

 

Variable Y: 
Nonspecificity=0.17 
Strife=0 

Variable Y: 
Nonspecificity=0.417 
Strife=0.854
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Conclusions
• Max-min probability

– Provides lower and upper bounds of probabilities
– Treats imprecision and randomness separately, provides two measures of

these uncertainties: Nonspecificity and Strife
– Maximum (minimum) probabilities of an event identical with Plausibility

(Belief) in evidence theory if [A min,i, A max,i] are focal elements with basic
probability 1/n

– Computation of maximum and minimum joint probabilities of A and B
using optimization produces same results as evidence theory with
Dempster’s rule of combination

• Bayesian method
– Accounts for correlation, bias, and credibility of experts
– Strong axiomatic foundation
– Bayes’ rule does not directly apply when evidence consists of  intervals
– Requires analyst to make assumptions about:

• Prior knowledge of probability distributions of random variables
• Joint probability distributions of errors of experts

– Does not distinguish between imprecision and randomness
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Experimental Comparison

• A method for quantifying uncertainty will
eventually be used for making decisions

• A good method should lead to decisions that
produce desirable outcomes in the long run

• Testing can help us discover weaknesses in
methods

• Test methods in terms their effectiveness
for making decisions using simulations
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Motivation for Selection of Test Problem

• We want to test which of two players (John and
Linda) can better estimate the weight of a piece of
cake

• Players take turns splitting cakes using the
following rules:
– One player cuts cake into two
– Other player selects a part
– Player who split cake gets remaining part

• The player whose pieces have higher total weight
wins
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Testing Methods for Modeling Uncertainty Using
Interval Splitting Problem

• We want to test which method can better estimate the probability
distribution of function Y = Y(X)

•
• Evidence about X from experts
• Two players;

– Each player wants to get subinterval of Y with higher probability
– Each player uses different method for modeling uncertainty

•   Players take turns splitting interval of Y using the following rules:
– One player splits interval into two
– Other player selects a subinterval
– Player who split interval gets remaining subinterval

• The player whose pieces have higher average probability wins

],[],[ ulul yyYxxX ∈⇒∈
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Decision Tree

.

.

.

Player 1 selects y0

Player 2 selects
left subinterval,
p(y0)

Player 2: selects
right subinterval,
1-p(y0)

Objective function of Player 1:
1-2FY(y0)

Objective function of Player 1:
2FY(y0) -1
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Deciding Who Made Better Decisions

Database of PDF’s
supported in interval [xl, xu]

Players estimate PDF’s 
of X and Y, and take turns
 splitting interval [yl, yu] 

Evaluate objective
functions of two players
for each PDF in database

 

Evaluate and compare
average objective function

of each player
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